
A Custom Computing System for Finding
Similarties in Complex Networks

Christian Brugger∗, Valentin Grigorovici∗, Matthias Jung∗, Christian Weis∗,
Christian De Schryver∗, Katharina Anna Zweig‡, Norbert Wehn∗

∗Microelectronic System Design Research Group, University of Kaiserslautern, Germany
‡Graph Theory & Complex Network Analysis Group, University of Kaiserslautern, Germany

{brugger, jungma, weis, schryver, wehn}@eit.uni-kl.de,
valentin.grigorovici@gmail.com, zweig@cs.uni-kl.de

ABSTRACT
Complex graphs are at the heart of today’s big data chal-
lenges like recommendation systems, customer behavior mod-
eling, or incident detection systems. One reoccurring task
in these fields is the extraction of network motifs, reoccur-
ring and statistically significant subgraphs. In this work we
propose a precisely tailored embedded architecture for com-
puting similarities based on one special network motif, the
co-occurrence. It is based on efficient and scalable building
blocks that exploit well-tuned algorithmic refinements and
an optimized graph data representation approach. On chip,
our solution features a customized cache design and a light-
weight data path that allows the system to perform over
10,000 graph operations per cycle on each chip. We provide
detailed area, energy, and timing results for a 28 nm ASIC
process and DDR3 memory devices. Compared to an Intel
cluster, our proposed solution uses 44x less memory and is
224x more energy efficient.

1. INTRODUCTION
Many applications in the big data context are based on

fast and reliable identification of so-called network motifs
in large networks, i.e., those subgraphs whose occurrence is
significantly higher than expected in a random graph model.
This enables analyzing large-scale biological data in bioinfor-
matics, the analysis of connections in social networks, inci-
dent detection, and general graph data cleaning procedures
by link assessment [1].

In this work, we consider a special variant of motifs, the
so-called co-occurrence (coocc) which is defined as the num-
ber of common neighbors of two nodes in a graph. It can, for
example, be used to clean biological high-throughput data or
to build e-commerce applications like recommendation sys-
tems [1]. However, computing the coocc on standard central
processing unit (CPU)- and graphics processor unit (GPU)-
based architectures is very time and energy consuming.

In this paper we present a dedicated architecture for net-
work motif detection based on the coocc. It is problem-
independent and universally applicable to a wide application

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

range, for instance as a special accelerator device in bigger
system contexts. Due to its modular approach, the proposed
design can also be enhanced to other motifs in the future.

Our results show that the proposed architecture clearly
outperforms standard CPU server nodes, both with respect
to throughput and energy, but also total memory require-
ments. Compared to one 6-core Intel Xeon X5680 CPU, it
is 226x faster with an equivalent power consumption. We
demonstrate the performance of our design with the Net-
flix data set [2, 3] and show that one application specific
integrated circuit (ASIC) instance computes the same re-
sults in roughly the same time as a 10-node Intel cluster
but requires only 2.3% of total memory and less than 0.5%
of energy. These superior characteristics allow in particu-
lar the use of our architecture in power- and space-limited
data-centers and for constructing motif detection systems
targeted to process very large graphs with reasonable power
consumption and system costs.

In particular, the novel contributions in this paper are:
• We present the first hardware architecture for estimat-

ing similarities in graphs with fixed degree sequence
models [1].
• We introduce algorithms and data paths for coocc cal-

culations that massively exploit linear data access pat-
terns.
• We show an efficient cache design that allows the archi-

tecture to be scaled without requiring a higher memory
bandwidth.
• As results, we give detailed area, energy, and timing

results for a 28 nm ASIC process and DDR3 memory
devices, including a comparison to an Intel compute
cluster.

2. BACKGROUND AND RELATED WORK
Everybody who has used social networks knows the fa-

mous “Do you also know ...?” function. One could argue
that a large part of the success of modern social networks is
based on this feature. But how does it work? Which persons
should be for instance recommended specifically to you?

A powerful way is to look at the social network itself.
There, one can calculate how similar you are to each person
in the graph, only using the topology of the connections.
Based on that, one can then suggest the top ten most similar
people with respect to the direct neighborhood.

In this paper we consider the following method: In the
example given in Fig. 1, the similarity between you and Liam
is based on the number of common friends you have with her,
the so-called co-occurrence: coocc(you, Liam) = 3. Now we
have to ask whether the number three is significant. Assume

you Liam

Mia

Sophia

Ryan

Justin

Emma

Linda

Luis

coocc(you, Liam) = 3

degree=5

degree=1

Figure 1: The co-occurrence (coocc) between you and
Liam is defined as the number of shared friends you
have, in this case three.

you and Liam have thousands of friends, versus you have
only three. For this we create random graphs based on the
same degree sequence and the premise that nodes have no
similarities. In our example the sorted sequence of degrees,
the number of edges a node has, is {1, 1, 1, 1, 2, 2, 2, 5, 5}.

To get the random graphs we swap a sufficient number of
pairs of edges, drawn uniformly at random, if and only if
no multiple edges would arise due to the swap. This gener-
ates independent graphs with the same degree sequence, see
Fig. 2. Generating many of such graphs we can calculate the
expected coocc of this so-called fixed degree sequence model
(FDSM) [1, 4]. With that information we can judge how
significant the coocc in our original graph is.

2.1 Similarity measures
In general, there exist many ways to quantify the similar-

ity, most of them are various normalization of this coocc. In
the Jaccard-index, this value is normalized by the cardinal-
ity of the joint neighborhood. Pearson’s product moment
correlation coefficient uses the co-variance of the two vec-
tors, normalized by the product of their standard deviations.
However, these classic similarities do not take into account
the general distribution of the data. Complex network anal-
ysis has shown that in many cases, the number of neigh-
bors is heavily skewed, some authors even suggest that this
so-called degree distribution is a scale-free distribution [5].
This induces a heavily skewed coocc as well in most real-
world data sets, which is why the field of complex network
analysis suggests to compare the observed coocc (number of
common neighbors) with the expected coocc in an ensemble
of random graphs with the same degree distribution [6, 4].
This approach is called FDSM. In this setting, the observed
coocc can be corrected by the expected coocc; the resulting
difference is called the leverage. The leverage can then be
normalized by the standard deviation of the expected dis-
tribution to yield the z-score [6]. An alternative approach
is to use the empirical p-value, i.e., the probability to pick
a random graph instance in which the coocc is at least as
high as in the observed network. The usage of an elaborate
random graph model to assess the statistical significance of
an observed coocc by either the leverage, the z-score, or the
p-values has shown to produce results with higher quality in
many domains and is the basis of this work [7, 1].

2.2 Computing leverage, p-value, z-score
Given a bipartite graph G((Vl, Vr), E) with vertices Vl

you Liam

Mia

Sophia

Ryan

Justin

Emma
Linda

Luis

coocc2(you, Liam) = 2

you Liam

Mia

Sophia

Ryan

Justin

Emma
Linda

Luis

you Liam

Mia

Sophia

Ryan

Justin

Emma
Linda

Luis

coocc1(you, Liam) = 2

you Liam

Mia

Sophia

Ryan

Justin

Emma
Linda

Luis

cooccn(you, Liam) = 3

Original Graph

random

swaps

...coocc(you, Liam) = 3

cooccFDSM(you, Liam) = 2.2

leverage(you, Liam) = 0.8
p-value(you, Liam) = 0
z-score(you, Liam) = 1.4

Single swap example:

Figure 2: One hundred random graphs (right) with
the same degree sequence as the initial graph (left)
obtained by series of 40 swaps. The leverage is the
difference of the original coocc and the average coocc
of the random graphs samples (right).

and Vr and edges E, Vl being the side of interest, we de-
fine coocci(u, v) as the coocc for the graph sample Gi. Algo-
rithm 1 shows the full scheme. This way of generating graphs
is also called Markov chain Monte Carlo (MCMC) [8]. The
similarity measures for all u, v ∈ Vl are defined as:

coocc(u, v) =
∑
w∈Vr

{
1, if (u,w) ∈ E and (v, w) ∈ E

0, otherwise
,

cooccFDSM (u, v) = mean
(
{coocci(u, v)}i=1,..,|samples|

)
,

leverage(u, v) = coocc(u, v)− cooccFDSM (u, v), (1)

p-value(u, v) =

|samples|∑
i=1

{
1, if coocci(u, v) > coocc(u, v)

0, otherwise
,

z-score(u, v) =
leverage(u, v)

stddev
(
{coocci(u, v)}i=1,..,|samples|

) .
The higher the leverage or the z-score, or the lower the p-
value, the more similar the nodes are considered to be. Algo-
rithm 1 shows all the steps, Fig. 2 illustrates the procedure
with the friend-recommendation example. For our similar-
ity measures the complexity of Algorithm 1 is O(|Vl|2 · |Vr|)
what makes it very challenging to come up with a scalable
implementation.

2.3 Related work
Network motif detection is actively investigated in current

research, mainly from the algorithmic point of view. From
the implementation side, nearly all available work deals with
mapping the motif detection problem on parallel CPU and
GPU based clusters [9, 10]. To the best of our knowledge
there are no publications for accelerating motif detection, in
particular by a dedicated accelerator engine optimized for
this task. We were only able to detect a few works about
hardware implementations for general graph processing, but
none of them considering the specific case of cooccs.

There are frameworks like GraphGen by Nurvitadhi et al.

Data: Graph G((Vl, Vr);E) with vertices Vl and Vr and
edges E, Vl being the vertices of interest;

Result: Leverage, p-value, z-score for all pairs of
vertices (u, v) ∈ (Vl × Vl);

Calculate coocc(u, v) ∀ (u, v) ∈ (Vl × Vl); G0 := G;
for i := 1 to |samples| do

Gi := Gi−1;

Swap randomization:
for |swaps| do

Choose two edges at random in Gi and swap
them, if no duplicate edge arises from the swap;

end

Coocc computation:
Calculate coocci(u, v) ∀ (u, v) ∈ (Vl × Vl);

end
Calculate leverage, p-value and z-score according (1);

Algorithm 1: The complete Link Assessment algorithm,
calculating the similarity measures

presented in 2014 [11] or the Graphlet Counting Case Study
from Betkaoui et al. in 2011 [12] that generate specific data
processing engines for particular graph operations. Both
approaches aim at optimizing the memory accessing schemes
for the dynamic random-access memory (DRAM) in order
to fully exploit the available memory bandwidths. However,
they are not application tailored and cover a broad range of
graph problems instead of optimizing the performance for
motif detection.

3. EMBEDDED ARCHITECTURE
Nowadays it is a general trend in high-performance com-

puting (HPC) to enhance current HPC systems with ded-
icated accelerators that are optimized for time and energy
critical tasks what leads to more and more heterogeneous
computing architectures. This methodology is adapted from
embedded computing where the crucial design points are
mainly energy, power, and throughput efficiency. In this pa-
per we present an energy-optimized accelerator architecture
for computing similarity measures based on a network-motif-
approach in graphs. In detail, it consists of three main parts:
• Swap randomization: generate samples from the FDSM.
• Coocc calculation: calculate the co-occurrence of all

pairs for each random graph sample.
• Similarity measures: generate leverage, p-value, and

z-score based on the coocc.
Fig. 3 gives an overview of the architecture described next.

The global aim of our design is to minimize the number of
random DRAM accesses. For that reason, selecting appro-
priate data structures is the most crucial point. Instead of
using adjacency lists, we use an adjacency matrix to store
the graph. In that structure, accessing individually nodes di-
rectly corresponds to one access, as we exactly know where
to look.

Although the graphs we are dealing with are sparse, we
are storing them in adjacency matrices and not in adjacency
lists. While this might sound surprising, matrices have so
many advantages for the architecture that it outweights the
disadvantages by far, as we will see in Section 3.2 and 3.3.

3.1 Data structures
We are using three data structures: an adjacency matrix

holding the graph, an adjacency list holding the edges, and
a result matrix.

Given a bipartite graph G(Vl, Vr;E) consisting of the ver-

SWAP SWAP

DRAM
CH1 DRAM RANDOMIZATION RANDOMIZATION DRAM CH2

DRAMCTRL CTRL

DATA IN

R
E

S
U

LT

CO-OCCURRENCE
DRAM CH5

DRAMCTRL

DRAM
CH3 DRAM DRAM CH4

DRAMCTRL SWAP SWAP CTRL
RANDOMIZATION RANDOMIZATION

Figure 3: Overall architecture. The swap ran-
domization blocks and the co-occurrence work on
datasets residing in each of the DRAMs in a round-
robin fashion, while multiple swap randomization
blocks can work in parallel. The result is stored
separate.

Table 1: Partial result matrix entry

Variable Required bits

coocc(u, v) log2(|Vr|)∑
i coocci(u, v) log2(|Vr| · |samples|)∑
i coocci(u, v)2 log2(|Vr|2 · |samples|)

p-value count log2(|samples|)

tices Vl and Vr and the edges E, an adjacency matrix A =
(Vl × Vr) is stored. An entry in the matrix is Au,v = 1 if
(u, v) ∈ E. It is sufficient to store A with one bit per entry
and total storage requirement of |Vl| · |Vr| bit. Furthermore,
the edges are stored as a list in L. An edge is defined as the
pair of vertex indices which are connected by it. The edge
list requires |E|(log2 |Vl|+ log2 |Vr|) bits.

The result matrix contains partial results for calculating
the p-value and z-score for all the pairs in Vl. For each pair
(u, v) ∈ (Vl × Vl) we store an entry in an upper triangular
matrix, see Table 1. In a post-processing step, all similar-
ity measures can be efficiently calculated with these partial
results on a CPU.

3.2 Swap randomization

for |swaps| do
Generate two random numbers (RNs): a, b ∈ [1, |E|];
Read the two edges: u, x := La and v, y := Lb;
Check existence of swapped edges by reading:
k := Au,y and l := Av,x;
if both edges do not exist: k = l = 0 then

Swap the edges by writing: Au,x := 0; Av,y := 0;
Au,y := 1; Av,x := 1;
Update edge list by writing: La := u, y;
Lb := v, x;

end
end

Algorithm 2: Implementation of the swap randomization
step in Algorithm 1

We sample graphs from the FDSM based on MCMC. A
new sample Gi can be generated from the previous one Gi−1

by randomly swapping |swaps| edges, starting from the orig-
inal graph. In our architecture, the swapping is realized in
a finite-state machine (FSM) implementing Algorithm 2.

For generating the RNs, we use a Mersenne twister (MT)

19937 algorithm [13]. In this formulation, four random reads
and six random writes are necessary per swap.

3.3 Coocc calculation
Calculating the coocc between all pairs of vertices in Vl

in a naive way requires to load the same data many times,
making memory a bottleneck. For example, calculating the
coocc between u, v ∈ Vl requires edges connected to u and
v, or in other words the two rows u and v of the matrix
A. When the coocc is later calculated between u and w,
the same row Au needs to be loaded. This leaves huge po-
tential for an optimized memory hierarchy and algorithms
to miminizing data transfer. Solving this is our first major
contribution.

First we add a row-cache to the coocc module. Second
we structure the accesses in such a way that, once a row
is loaded into cache, it is not necessary to load it a second
time. Furthermore we use multiple modules to parallelize
the computations.

Having k parallel coocc units, we use their caches to store a
consecutive block of k rows Au, .., Au+k−1. Then we stream
one by one all following rows through the coocc modules,
starting with Au+k. With each new row Av the modules can
calculate the coocc of all pairs of the cached rows (u, v), .., (u+
k − 1, v). Algorithm 3 formalizes the scheme.

Data: Graph G((Vl, Vr);E) stored as adjacency matrix
A = (Vl×Vr), Vl being of the vertices of interest;

Result: coocc for all pairs of vertices (u, v) ∈ (Vl × Vl);
for u := 1 to |Vl| step K do

k := 0;
for v := u to |Vl| do

Stream row Av from external memory;
if k ≥ 1 then

Compare the streamed row with all
previously cached rows 1 to k and calculate
the coocc for the pairs:
(u, v), .., (u + k − 1, v);

end
if k < K then

k := k + 1;
Store the streamed row in cache k;

end
end

end
Algorithm 3: Implementation of the coocc computation
step in Algorithm 1 for K coocc modules

Looking closely, you will notice that this scheme also solves
the scaling problem. While adding m times more modules
reduces the runtime by a factor of m, it does not increase
the requirements for external bandwidth, still only one row
has to be streamed through all the blocks at each given time.
This allows us to place hundreds of coocc units next to each
other, providing massive speedups.

To calculate the actual cooccs, we propose efficient data
paths, our second major contribution. While standard CPU
and GPU architectures only standard data types can be
used, on the ASIC we are much more flexible. Assuming
that our rows are large, we receive them in blocks of data,
l bits per cycle. Having stored Au in the caches (LMEM)
and streaming Av, the coocc(u, v) can be optained by count-
ing all vertices that are connected to both u and v. The
row Au at position w is “1”, if and only if there is an edge
between u and w, for Av equivalently. Counting common

edges is equivalent to computing the cardinality of Au&Av.
This requires a lot of additions.

Fig. 4(a) shows our efficient data path tailored to this
task, consisting of an adder tree and accumulator. It is able
to process l edges per cycle. In the first stage, it uses only
1 bit adders, 2 bit adders in the second stage, and so on.

3.4 Similarity measures
Once all blocks of the row Aw have been streamed, the

final coocc value is computed. Based on that, all partial re-
sults from Table 1 can be updated. This involves reading
the entry from memory, updating, and writing it back, see
Fig. 4(c). It is worth noticing that this block does not have
to operate in each clock cycle, only once per complete row,
so that most of the operators can be shared among multiple
coocc computation blocks. After all samples have been com-
puted, the final similarity measures can be calculated on a
CPU by going once over the result data, which only takes a
few seconds.

Calculating the initial coocc is also performed on chip at
the beginning and stored in the partial results.

3.5 Parallelization
Parallelization is easily possible by using multiple instances

with each instance working on independent samples. For k
instances this reduces the total time by a factor of k. They
start all with the same initial graph and the results can be
easily combined at the very end by summation.

4. ASIC IMPLEMENTATION
We have implemented our architecture on register-transfer

level (RTL) with SystemVerilog and synthesized it with the
Synopsys Design Compiler for an advanced 28 nm low-power
technology node. Place&Route was performed with the Ca-
dence SoC Encounter. Based on the Netflix data we have ex-
tracted realistic activities that we fed into Synopsys Prime-
Time to obtain accurate power estimates.

We have integrated three 64 bit DDR3 memory controllers,
one for the result and two for storing the graph. At each
given time, the random swapping block is operating on one
controller and the coocc modules on the others. When both
are finished they switch over.

In the coocc module, the edge caches are 64 kB each, tar-
geting a frequency of 400 MHz. For a 64 bit double data rate
(DDR) channel at 800 MHz we get 256 edges per cycle when
running the coocc units at 400 MHz. That means the adder
tree has a width of 128 adders at the top and a depth of
seven stages. Pipelining the tree was not required for our
application. The operations to calculate the partial results
for the similarity are designed with 64 bit for the squares
and 32 bit for the rest, being shared over the cell.

We have synthesized four coocc modules in a single cell
and then combined them in a grid of 5 times 12. In total,
our ASIC architecture has 240 coocc modules. To distribute
the data to the caches or to stream further rows of the matrix
a tree-like replication network is used, while for the results
a shift register over the whole chip is used. That makes the
architecture perfectly scalable. In total, our architecture
performs 240 · 256 = 61,440 graph operations per cycle.

The rest of the design is occupied by memory controllers
and IO, see Fig. 5. Table 2 shows the resources of each
module. For the memory controllers we have estimated the
numbers based on the corresponding publications [14, 15].
The whole chip has a size of 51.2 mm2 and an average power
consumption of 11.7 W.

We assume that the final system is equipped with two

Figure 4: The coocc and result module (b) works on one dataset after another, always updating the same
result. It loads one row of the graph into the caches (LMEM) and first calculates the coocc before calculating
the similarity measures. The coocc module (a) consists of an efficient adder tree operating on blocks of l
edges per cycle. While the similarity measures (c) consists of several arithmetic blocks it is only called once
per row, making it possible to share most of the resources.

Table 2: ASIC Ressources

Size Frequency Power1

Component [mm2] [MHz] [W]

Swap randomization 0.01 400 0.002
4 coocc cell 0.572 400 0.123
DDR3 controller 4.8 800 0.8
IO and interconnect 2.4 400 0.56
One DDR3 DIMM during:

swapping – – 1.8
coocc computation – – 2.2
result processing – – 1.5

Our chip2 51.2 400 11.73

1fully utilized for single components
2240 coocc modules, 1 swap module, 3 DDR3 controllers
3based on activities running the Netflix dataset

2 GB DDR3-1600 DIMMs for the graphs and a 4 GB module
for the result. We have modeled the timing of the DIMMs
with DRAMSys tool [16] and estimated power with DRAM-
Power tool [17]. As inputs to the tools we created DRAM
access patterns for all the modules, specifying in which or-
der, when, and at which address the DRAM is accessed.
Based on those trace files the tools provided us with exact
timings and power estimations given in Table 2.

Note that neither the architecture nor the algorithm makes
any assumption about the properties of the graph: Every
graph can be processed by the ASIC. Of course as in every
computing architecture the graph needs to fit into system
memory. The number of coocc units was chosen such that
the chip area is around 50 mm2, a reasonable target for to-
day’s IP-cores. At runtime, the input graph is folded in
space and time onto the available coocc units and buffers.

5. CLUSTER COMPARISON
To demonstrate the performance of our design we have

calculated the similarity measures for the Netflix dataset [2,
3]. Netflix, a commercial video streaming service, has re-
leased 100,480,507 user ratings for all of their 17,700 movies

from 480,189 users. While users give ratings in the range of
1-5, we have extracted an input graph with edges between
users and movies whenever the rating is 4 or 5 only. As
a result, the input graph has 17,769 movies, 478,615 users,
and 56,919,190 edges. In this case Vl will be the movies, Vr

the users, and E the 4, 5 ratings.
The swap randomization module of our design takes 2.14 s

to generate a new random graph by swapping the dataset
with |swaps| = |user| log |user| = 6,259,639. The coocc
module, working in parallel, takes 3.25 s to calculate the
coocc partial results from one graph. During this time the
result memory controller is active in 20 % of the time. We
have used a total number of samples |samples| = 10,000 that
ensure sufficient convergence. In total, our design takes 9.0
hours to process the Netflix data.

For a system level comparison, we have included the power
of our design and DRAM as well as a 20 % overhead of
2.63 W to account for necessary board components (eth-
ernet, clocks) and the power supply. Post-processing and
calculating the final similarity measures for the Netflix data
takes on an Intel node 0.325 seconds or 120 J, during the
rest of the time the CPU is free to use for other purposes.

To make a fair comparison, we have spent a lot of effort on
optimizing the parallel cluster implementation. Two skilled
persons spent three months full time for this reference work.
Optimization involved selection of algorithm that minimize
computing time for the given memory resources, remov-
ing locks by data partitioning and data access linearization.
Since swapping is hard to parallelize, each core works on its
own sample during swapping, generating 12 samples on one
server node. Afterwards, the partial results are updated one
sample after another, while all the 12 cores work in paral-
lel on one sample to reduce memory requirements. Among
nodes, the parallelization is the same as for the chips with
each node working on independent samples. Communication
is performed over InfiniBand only required to distribute the
data at the beginning and aggregate the results at the very
end of the algorithm.

For the cluster implementation, the swapping works on
the same adjacency matrix A as in the proposed architec-
ture to minimize random accesses. At the same time an

Table 3: Cluster ASIC comparison

Memory1 Runtime Power Energy
Implementation [GB] [hour] [W] [MJ]

10 node Intel cluster2 202/480 8.5 3700 114
This work3 4.6/8 9.0 15.8 0.51

Improvement 44x 0.95x 224x

1used/available memory
2each node: 2×Intel Xeon X5680 @ 12×3.33 GHz, 32 nm;
48 GB DDR3 memory
3node inclduing: ASIC with 240 modules, 28 nm; 8 GB
DDR3 memory; board (ethernet, clocks), power supply.

adjacency list is kept in memory that contains the user ids
of the people who have rated the film for each movie. This
adjacency list is used to calculate the coocc, since using the
matrix for coocc calculations is very inefficient on the CPU.

For the cluster we have measured the average system power
with a power meter during operation. Note that the power
measurements for both the cluster and proposed architecture
consider the entire link assessment algorithm, assuming the
input and result are in memory. The results are listed in
Table 3.

6. CONCLUSION
Discovering similarities in graphs is an important task in

many big data applications. However, for large graphs this
is in general a very time and memory consuming job on
standard computing clusters. In this work we introduce a
dedicated hardware architecture that implements the three
basic steps for this tasks: swap randomization, coocc compu-
tation, and calculating the similarity measure. To the best of
our knowledge, it is the first tailored hardware architecture
for computing similarity measures based on a network-motif-
approach in graphs. Our design is universally applicable to
a large range of big data applications like bioinformatics,
recommendation systems, friend suggestions in social net-
works, or general graph cleaning as it is. Due to its modular
structure, it can be easily enhanced to other network motifs
and similarity measures.

Since the main limitation in this application is in general
the memory bandwidth utilization to the DRAM, we have
optimized our architecture for minimal DRAM accesses. For
that purpose, our proposed design features well-matched
data structures: Instead of using adjacency lists as normally

IO

D
D

R3
_M

C_
1

DDR3_MC_2

D
D

R3
_M

C_
3

COOCC_240 4 coocc cell

Figure 5: ASIC floorplan of our 28 nm chip. The
chip consists of 240 coocc modules, three DRAM
controllers and IO logic. The swap randomization
block is not visible here due to its small size.

done in CPU clusters, we implement the complete adjacency
matrix, but with 1 bit entries only. This is not practical in
generic computing platforms in this way. With that ap-
proach we minimize the data transmission in general and in
particular the DRAM bandwidth.

We have synthesized our design for a 28 nm process and
could achieve a clock rate of 400 MHz for a die size of 51.2 mm2

and a power consumption of 11.7 W.
As a result, the proposed architecture is both energy and

memory efficient. In comparison to a 10-node standard dual-
socket Intel cluster, our design achieves the same throughput
with less than 0.5% of power and therefore energy per task.
At the same time, it requires only 2.3% of DRAM.

7. REFERENCES
[1] Katharina Anna Zweig et al. A systematic approach to the

one-mode projection of bipartite graphs. Social Network
Analysis and Mining, 1(3):187–218, 2011.

[2] http://www.netflixprize.com/, last access: 2014-12-01.
[3] James Bennett et al. The netflix prize. In Proceedings of

KDD cup and workshop, volume 2007, page 35, 2007.
[4] Aristides Gionis, et al. Assessing data mining results via

swap randomization. ACM Transactions on Knowledge
Discovery from Data, 1(3):article no. 14, 2007.

[5] Albert-László Barabási et al. Emergence of Scaling in
Random Networks. Science, 286(5439):509–512, 1999.

[6] Ron Milo, et al. Network Motifs: Simple Building Blocks of
Complex Networks. Science, 298:824–827, 2002.

[7] Emőke-Ágnes Horvát, et al. A network-based method to
assess the statistical significance of mild co-regulation
effects. PLOS ONE, 8(9):e73413, 2013.

[8] George W. Cobb et al. An Application of Markov Chain
Monte Carlo to Community Ecology. The American
Mathematical Monthly, 110:265–288, 2003.

[9] Pawan Harish et al. Accelerating Large Graph Algorithms
on the GPU Using CUDA. In Srinivas Aluru, et al., editors,
High Performance Computing (HiPC), volume 4873 of
Lecture Notes in Computer Science, pages 197–208.
Springer Berlin Heidelberg, 2007.

[10] B.A. Miller, et al. A scalable signal processing architecture
for massive graph analysis. In Proceedings of the 2012
IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 5329–5332, March 2012.

[11] Eriko Nurvitadhi, et al. GraphGen: An FPGA Framework
for Vertex-Centric Graph Computation. In Proceedings of
the 2014 IEEE 22nd Annual International Symposium on
Field-Programmable Custom Computing Machines
(FCCM), pages 25–28, May 2014.

[12] B. Betkaoui, et al. A framework for FPGA acceleration of
large graph problems: Graphlet counting case study. In
Proceedings of the 2011 International Conference on
Field-Programmable Technology (FPT), pages 1–8, Dec
2011.

[13] Makoto Matsumoto et al. Mersenne Twister: A
623-Dimensionally Equidistributed Uniform
Pseudo-Random Number Generator. ACM Trans. Model.
Comput. Simul., 8(1):3–30, January 1998.

[14] Jason Howard, et al. A 48-core IA-32 message-passing
processor with DVFS in 45nm CMOS. In Solid-State
Circuits Conference Digest of Technical Papers (ISSCC),
2010 IEEE International, pages 108–109. IEEE, 2010.

[15] Denis Dutoit, et al. A 0.9 pJ/bit, 12.8 GByte/s WideIO
memory interface in a 3D-IC NoC-based MPSoC. In VLSI
Technology (VLSIT), 2013 Symposium on, pages C22–C23.
IEEE, 2013.

[16] Matthias Jung, et al. TLM modelling of 3D stacked wide
I/O DRAM subsystems: a virtual platform for memory
controller design space exploration. In Proceedings of the
2013 Workshop on Rapid Simulation and Performance
Evaluation: Methods and Tools, RAPIDO ’13, pages
5:1–5:6, New York, NY, USA, 2013. ACM.

[17] Karthik Chandrasekar, et al. Improved Power Modeling of
DDR SDRAMs. In proc. DSD’11, 2011.

