
Abstract While network analysis is more than 70 years old, the analysis of paths in
complex networks is yet almost negligible. Here, we introduce different measures of
computing the pairwise similarity of paths, either simply based on the elements in
the paths, their sequence, on the graph in which they are embedded, or incorporating
all three features. Based on ground-truth in a data set concerning how people solve a
one-player puzzle, we show that the classification of the paths using the similarity
measures in a hierarchical clustering approach performs best for the similarity mea-
sures which integrate all three features. We thus give first evidence that path similarity
measures provide another dimension to mine and analyze complex networks.

1 Introduction
The analysis of complex networks has become a large and active field in which a
broad variety of results has been published. In many cases, entities use the network
as environment and move from node to node. The most obvious example is human
navigation in spatial networks, travels in a transportation network, users surfing the
WWW, but also game players exploring the problem space of the game, or students
using an e-learning environment by following different paths through interlinked
documents and media. In all these examples, the entities move on paths (or trails or
walks) through the network which are usually neither the shortest path nor totally
random (we will use the term path, if not explicitly stated otherwise, it includes
walks and trails). But while there has been research concerned with human mobility
patterns in a broad sense [4, 6], there has been almost no work which considers the
actual paths taken. Consider for example the network shown in Figure 1 which shows
which paths humans have taken in it. All humans navigating in this network started
in the leftmost node and aimed at reaching the nodes in the bottom-right corner
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Fig. 1: (a) An example for a Rush Hour board. The red car needs to be removed from
the board. A legal move consists of horizontal (vertical) move of one horizontally
(vertically) placed car. (b) Each node represents one state of a puzzle and two states
are connected by an edge if there is a legal move between them; some states represent
the solution of the puzzle. The width of an edge is proportional to the number of
users that made this move. Paths from a distinct starting state of the puzzle are called
solving when they reach one of the states representing the solution of the puzzle.

of the picture. The thickness of the edges corresponds to the number of humans
who used this edge in their path. It is astonishing that there are some paths in the
network which are used more often than others although they are not necessarily the
shortest ones. A human eye can also recognize that there are some paths which are
more similar to each other than others. Also in other cases, it makes sense not to
treat every path as a single path, but to find groups of similar paths and use these
groups for further analysis. This can help to find common or distinguishing patterns
in the paths and reduces the large amount of taken paths into representative groups.
If such a clustering procedure is able to partition given paths into groups such that
the paths within one group share elementary structural commonalities, it can be used
in different application scenarios. By clustering paths of students in an e-learning
environment, one might be able to identify different learner types and structure the
materials accordingly. Grouping paths of players solving a puzzle can be used to find
different strategies to solve the game. Clustering paths in a road network can lead to
a procedure for identifying different means of transportation.

However, such a clustering requires a similarity measure. A similarity measure
needs to be able to incorporate the most essential information contained in a path
and weight them in an appropriate way. Therefore, the question arises of how to
quantify the similarity of paths. It is surprising that there has been no approach
proposed to measure the similarity of paths in complex networks and to group paths
by similarity. Thus, in this paper, we: (i) provide seven first similarity measures for
paths in networks which are either based on the elements contained in the paths, or
on their sequence, on their embeddedness in the network, or on all three features,
(ii) compute the proposed similarity measures for all pairs of paths of a benchmark
data set with more than 13000 paths from 20 different networks (of the same kind),
and (iii) for each of the networks, we cluster all paths with a hierarchical clustering
approach with each of the proposed measures, and (iv) evaluate the results with

(a) (b) Problem space and human navigation
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respect to a property of the paths that we set as ground-truth. It is crucial to note that
this work does not the aim at developing a classifier that partitions the paths according
to the ground truth. This could be easily achieved by using other path-features or
external features. The main goal is rather to evaluate the proposed similarity measures
whether they are able to distinguish between structurally different paths.

The article is hence structured as follows: Section 2 gives an overview of research
from other fields. Seven similarity measures for paths are introduced in Section 3.
Section 4 gives the details of our approach for clustering paths, including the used
data set (Sec. 4.1), the used ground truth and evaluation methods (Sec. 4.2), and the
results (Sec. 4.3). Section 5 summarizes the findings of the article.

2 Related Work
While we know of no articles that proposed a similarity measure of paths in a complex
network using their embeddedness in it, work that is related to the presented can be
found in several different areas of research: In applications like video surveillance
systems, it is desirable to track moving objects through consecutive video frames
and to extract their trajectories. In order to automatically recognize anomalous
movements of objects, a system needs to be able to distinguish between regular
and anomalous trajectories. For this reason, there are several approaches how to
compare and group trajectories of moving objects [1, 3, 15, 19]. The most often used
similarity measures are the length of the longest common subsequence [3, 19] and the
Hausdorff distance [12]. In the analysis of trajectories created from tracking moving
individuals by (GPS) sensors, the Frchet distance has been extensively studied and
applied [7], for example for detecting recurring patterns in trajectories [2]. In the
context of web mining, it is beneficial to cluster similar user web sessions, for example
for commercial or didactic interest, which is why there are several approaches to
cluster sequential data. While Wang and Zaı̈ane propose a clustering method for web
sessions based on sequence alignment [20], Kumar proposes a new similarity metric
for sequential data [13]. For comparing general sequential data, Moen, Mannila
and Das presented several approaches [16, 17, 18] which use a measure similar to
the longest common subsequence and eventually incorporates the similarity of the
contained events themselves. Clustering of sequences has also been applied in order
to make predictions, for example by Laasonen on routes of mobile phone users [14].
However, although some of these approaches can be adapted to paths, they do not
consider the complex network in which the paths are embedded in. Taking into
account the underlying complex networks is additional information which—as we
will show in the following—will yield better results when finding groups of similar
paths. Additionally, a systematic evaluation of possible similarity measures of paths
has been not provided yet.



186 Mareike Bockholt and Katharina A. Zweig

3 Similarity Measures for Paths
Definitions Let G = (V,E) with V = {v1, . . . ,vn} and E ⊆ V ×V denote a simple,
connected, undirected, and unweighted graph. We define a path P in G as finite
sequence P = (p1,ep1 , p2, . . . , p`−1,ep`−1 , p`) with pi ∈ V for all i ∈ {1, . . . , `} and
epi = (pi, pi+1) ∈ E for all i ∈ {1, . . . , `−1}. Note that we do not require the edges
or nodes of a paths to be distinct. Some authors would thus call P a walk. Since the
considered graphs are simple, a path is uniquely determined by its node sequence and
the notation can be simplified to P = (p1, p2, . . . , p`) which is used in the following.
Let V (P) = {p1, . . . , p`} and E(P) = {ep1 , . . . ,ep`−1} denote the set of nodes and
edges which are contained in a path P, respectively. The length |P|= `−1 of a path P
is defined as the number of (not necessarily distinct) edges. It holds that |P| ≥ |E(P)|.
Furthermore, let I(P) = {1, . . . , `− 1} be the set of node indices of path P. For
two nodes v,w ∈V , we define the distance of v and w as the length of the shortest
path between v and w. If there is no path from v to w, it is set d(v,w) := ∞. In the
remainder of this article, we assume that G is a connected graph, hence d(v,w)< ∞

for all v,w ∈V . For a path P and a node v ∈V , we define the distance of v and P as
d(v,P) = min

{
d(v,w)

∣∣w ∈V (P)
}

.
In the following, we assume that we have a graph G and a set of paths P(G) of

valid paths in that graph. The research question is how to cluster these paths into
coherent groups, given a suitable similarity measure σ : P(G)×P(G)→ R. In order
to derive meaningful similarity and distance measures for paths, the most essential
information contained in them needs to be determined. There are three obvious pieces
of information contained in any path: (i) the elements contained in the paths, i.e., its
nodes and edges, (ii) the order of the contained elements, and (iii) the position of
the contained elements in the graph, i.e., their distance to the elements of the other
path. Thus, as a first approach to determine the similarity of two paths, they can
either be modeled as sets and existing measures for comparing sets can be used, or
they can be modeled as sequences and existing measures for comparing strings or
sequences can be used. Finally, paths can be considered as objects in the network,
which allows incorporating the distance of the path’s nodes in the graph into the
similarity measure.

Element-based measures If a path is represented as a set of nodes or as a set of
edges, well-known similarity measures for sets can be used, such as the number
of common nodes or edges, or—as its normalized version—the Jaccard index [9].
The measures (normalized) node set similarity σnss (σN

nss) and (normalized) edge set
similarity σess (σN

ess) for two given paths P,Q ∈ P(G), are then defined accordingly
(cf. Table 1).

Order-based measures If a path is understood as a sequence of nodes, similarity
measures for sequences can be used, for example the longest common subsequence
of the two paths [8]. For a path P = (p1, p2 . . . p`−1 p`), a subsequence of P is defined
as any sequence of nodes which can be obtained by deleting nodes from P. Note that
a subsequence of a path in a graph is not necessarily a valid path in that same graph
anymore. For two paths P, Q, let lcs(P,Q) denote the length of their longest common
subsequence. The corresponding LCS similarity σlcs is as defined in Table 1, the
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normalized similarity measure is obtained by dividing lcs(P,Q) by the length of the
longer path (see Table 1).

Table 1: Definitions of the similarity and distance measures for paths P,Q. σ and
σN denote unnormalized and normalized measure in the first and second columns,
respectively, similarly for distance measures δ .

Position-based measures While the previously proposed similarity measures only
take into account nodes or edges contained in the paths or their order, we also propose
four measures which consider the position of the paths in the network. The motivation
is that even two paths that do not share a single edge can be close or distant within
the graph they are embedded in. For example, if two people drive from the same
city to the same other city, but one on a highway and one on country roads next to
the highway, the two paths should be rated as more similar than if one drives from
north to south and the other from east to west. The idea of the following measures is,
thus, to calculate the distance in the graph from each node in P to a corresponding
node in Q and to calculate the average of these node distances. A position-based
distance measure for two paths P and Q is defined as δ (P,Q) = ∑i∈I(P) d(pi,qG(i))
for a mapping function G : I(P)→ I(Q) which determines the counterpart for each
node. The main problem is to find the appropriate counterpart of each node. A first
naive proposal for G constraints the distance measure to paths with equal length
and matches the i-th nodes of the paths with each other. For two paths P,Q with

σ (N)
nss |V (P)∩V (Q)| |V (P)∩V (Q)|

|V (P)∪V (Q)|
σ (N)

ess |E(P)∩E(Q)| |E(P)∩E(Q)|
|E(P)∪E(Q)|

σ (N)
lcs lcs(P,Q)

lcs(P,Q)
max{|P|,|Q|}+1

lcs(P,Q) length of longest
common subsequence of
P,Q

δ (N)
sad ∑i∈I(P) d(pi,qG(i))

δsad(P,Q)
�

Gsad identity function,
|P|= |Q|= �−1

δ (N)
mad

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑�

i=1 d(pi,Q) if � > k

∑k
i=1 d(qi,P) if � < k

min{∑�
i=1 d(pi,Q),∑k

i=1 d(qi,P)}

δmad(P,Q)
max{|P|,|Q|}+1

Gmad(i) = j s.t. d(pi,q j)
minimal, |P|= �−1, |Q|=
k−1

δ (N)
comappa1 minG∈Gcomappa1

{
∑i∈I(P) d(pi,qG(i))

δcomappa1(P,Q)

max{|P|,|Q|}+1

|P| ≥ |Q|, Gcomappa1(P,Q)
set of surjective and order-
preserving functions G :
I(P)→ I(Q)

δ (N)
comappa2 minG∈Gcomappa2(P,Q)

{
∑(i, j)∈G d(pi,q j)

δcomappa2(P,Q)

max{|P|,|Q|}+1

Gcomappa2(P,Q) set of
left-total, right-total,
order-preserving relations
G ⊆ I(P)× I(Q)

}

}
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|P| = |Q| = `− 1, G is set to Gsad(i) = i for all i ∈ {1, . . . `− 1}}. This yields the
(normalized) simple average distance as defined in Table 1. The simple average
distance is a distance metric, but has two main deficiencies: it is only applicable to
paths of equal length, and the matching function G might not be a good choice in
many cases. For these reasons, we also consider the matched average distance which
matches each node of P onto the node of Q which is closest by its graph theoretic
distance. Since it seems reasonable to map each node of the longer path onto a node
of the shorter path, we get for two paths P and Q with |P|= `−1 and |Q|= k−1 the
measure δmad , as defined in Table 1. The normalized matched average distance δ N

mad
is obtained by dividing by the length of the longer path. For this distance measure, the
corresponding mapping function is thus Gmad(i) = j such that d(pi,q j) is minimal.
Note that with this mapping, it might happen that there are nodes in the shorter path
which are not matched at all, although it is the shorter path of the two. Furthermore,
while the simple average distance takes into account the order of the nodes in the
path by the restrictive mapping Gsad , this quality is lost by weakening the restrictions
to the node mapping. By mapping each node of P onto its closest node in Q (or vice
versa), the mapping allows for example that the last node of P is mapped onto the
first node of Q. It follows directly that this measure does not satisfy coincidence
since two paths with identical node sets, but where the nodes occur in different order
will have a matched average distance of 0 although they are not identical.

In order to avoid this, we require G to be a surjective function which considers
the order of the nodes: we say that G : I(P)→ I(Q) is order-preserving if for all
i, i′ ∈ I(P), it holds that i ≤ i′⇔ G(i) ≤ G(i′). Let Gcomappa1(P,Q) be the set of all
functions G : I(P)→ I(Q) with these properties. The corresponding distance measure
called (normalized) CoMapPa1 distance δcomappa1 (for COnsecutive MAPping of
PAths) is then obtained by taking the least expensive of these mappings (see Table 1).
Note that Gcomappa1(P,Q) = /0 if |P|< |Q|. A dynamic programming approach can
be used to compute this measure in O((|P|− |Q|+1) · |Q|) assuming that the graph
distances are precomputed.

The last distance measure to be introduced is a refinement of the CoMapPa1
distance leading to the CoMapPa2 distance measure. The CoMapPa1 distance mea-
sure exhibits an asymmetry because the longer path (P) is mapped onto the shorter
path (Q): while each node of P is mapped onto exactly one node of Q, several nodes
of P may be mapped onto one node of Q. In order to fix this issue, let Gcomappa2 be
the set of all relations G ⊆ I(P)× I(Q) which are left-total, right-total, and order-
preserving (where a relation G is order-preserving, if for all (i, j),(i′, j′) ∈ G, it
holds that i≤ i′⇔ j ≤ j′). The corresponding distance measure, i.e., the (normal-
ized) CoMapPa2 distance δcomappa2 (δ N

comappa2), is then defined as in Table 1. For
two paths P and Q, this measure can be computed in O(|P| · |Q|) using a dynamic
programming approach, assuming the graph distances are precomputed.

Having these seven similarity and distance measures at hand, a data set of more
than 13000 paths in 20 different networks is used to evaluate the proposed measures
and give the proof of concept that clustering paths into groups is a viable way of
mining complex networks.
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4 Using the Measures for Clustering Paths
In Section 3, seven similarity (and distance) measures for paths are proposed (we
will stick to the term similarity measure, if not explicitly stated otherwise, this term
includes also the position-based measures although they are distance measures). The
following approach clusters paths of a given data set by a hierarchical clustering
approach, separately for each of the proposed similarity measures. We will give
evidence that the similarity measure which incorporates information of the underlying
complex network and the order of the nodes in the paths, i.e., the CoMapPa2 distance
yield the most intuitive results for finding functional groups of paths. We start by
providing information about the used data set before the method, the evaluation
scheme, and the results are described.

4.1 Data
The networks of the data set are problem spaces of a board game such that the paths
represent solutions of players. We consider the board game Rush Hour (invented by
Nob Yoshigahara, distributed by ThinkFun Inc. and HCM Kinzel (Germany)) which
is a one-player block sliding puzzle (see Figure 1a). It takes place on a board of 6×6
cells with one designated exit on which blocks are placed horizontally or vertically
which represents a parking lot with parking cars. The blocks can have a length of 2
or 3 cells and a width of 1 cell. The goal of the game is to find a sequence of moves
which allows a particular car to exit the board through the designated exit. A legal
move is to move a car an arbitrary number of cells forwards or backwards, but not
sideways. We call the exact positions of all cars a configuration of the game. We
generate a graph Gc = (V c,Ec) from a Rush Hour start configuration c by taking all
configurations reachable from the start configuration by legal moves as node set V c,
and the legal moves between them as edge set Ec. This graph is called the problem
space associated to configuration c. We consider a Rush Hour game instance as
solved when the cars on the board are in such positions that the particular car can
be removed from the board with one additional move. We call such configurations
solution states. With the concept of the problem space, solving a Rush Hour game
instance can be understood as finding a path from c to a solution state. Such a path is
called a solving path. In the optimal case, the found path is as short as possible.

Source The data set used for analysis was collected by Pelánek and Jarušek [11]
who developed a problem solving tutor (available under tutor.fi.muni.cz) which is a
web-based tool for learning by problem solving and is used in educational contexts. A
detailed description is provided by Jarušek [10]. Among others, the system contains
Rush Hour game instances of different degrees of difficulty. Twenty exemplary
configurations with a sufficient amount of played paths were selected for analysis.
Let C denote this set of start configurations of the game instances. The data set
contains the log data of all users of the system how they solved (or attempted to
solve) the instances. It is important to note that users can also skip to the next game,
if they feel they cannot solve the puzzle (or lose interest).

http://tutor.fi.muni.cz
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Preprocessing For each configuration c ∈ C , the associated problem space Gc

is computed1 The problem spaces of the selected games are of the order of several
thousands of nodes each. Any user who attempts to solve a game instance creates
a path in the problem space of the configuration. For each user, each configuration
and each attempt, the generated path is extracted from the log data. Any move
which is done after a solution state was reached is not considered anymore, but
the path is considered as solving path. Let Pc denote the set of extracted paths for
the configuration c. The table available under the given link also contains for each
configuration how many paths were extracted (between 156 and 2934 paths) as well
as the information of how many nodes of the problem spaces were actually visited
by any of the players. Surprisingly, in average only 10% of the nodes were visited
by at least one player.

Clustering For each of the configurations, for all pairs of paths from Pc×Pc, all
of the seven similarity measures are computed. For computing the simple average
distance, the paths were cut to equal length for each configuration. However, in
preceding studies for evaluating all similarity measures on the paths cut to equal
length, the simple average distance has less promising results than the other distance
measures. Thus, and because the simple average distance will be too restrictive for
any application, the results for the simple average distance are omitted, and we only
discuss the analysis of the complete uncut paths. The values of all unnormalized
measures were scaled to the interval [0,1], the values of the similarity measures
were then transformed by 1−σ (N)(P,Q) to result in a distance measure. For each
configuration, the matrices with the similarity values for all pairs of paths are the
input for an hierarchical clustering algorithm with either complete, average linkage
methods or by Ward’s clustering criterion [21]. The results for all three clustering
methods show the same qualitative results and differ very little quantitatively; we
thus only discuss the results of the clustering with complete linkage.

4.2 Ground Truth and Evaluation of the Results

For interpreting the results of the clustering procedures and to evaluate the differ-
ent similarity and distance measures for paths, an evaluation criterion is necessary.
For this, we use a very simple ground truth: a clustering procedure with an appro-
priate similarity measure as input should be able to distinguish between solving
and non-solving paths. It is important to note that the goal of this work is not
the development of a classifier which is able to distinguish between solving and
non-solving paths. This could be done easily by other methods. The primary aim
is to evaluate the presented similarity measures whether they are able to distin-
guish between structurally similar and dissimilar paths. In order to evaluate this,
the semantic feature of the paths of being solving or non-solving is used: a well-

1 A detailed description of the data set and the problem spaces can be found online under
http://gtna.cs.uni-kl.de/en/gruppe/bockholt/PDFs/CN2016SupplementaryMaterial.pdf.

http://gtna.cs.uni-kl.de/en/gruppe/bockholt/PDFs/CN2016SupplementaryMaterial.pdf
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Fig. 2: Weighted average purity of the clustering results for some exemplary configu-
rations, i.e., the Games 19, 578, 765, and 906.

designed similarity measure should at least distinguish between paths of these two
classes. Hence, for each path of a configuration c, we define the binary attribute
q : Pc→ {0,1} which yields a 1 for a solving path, and a 0 for a non-solving path.
A given cluster γ = {p1, . . . , pm} ⊆ Pc is then called pure if all paths in γ are either
solving or non-solving. Since the requirement that a cluster should be pure, is a
very strict one, we rather consider its purity. The purity of a cluster γ is defined
as purity(γ) = 1

|γ|max{∑pi∈γ q(pi), |γ|−∑pi∈γ q(pi)}, i.e., the maximum of the two
fractions of paths in γ which are solving or non-solving. Note that purity(γ)≥ 0.5
always holds. Let q(Pc) =

1
|Pc|max{∑p∈Pc q(p), |Pc|−∑p∈Pc q(p)} denote the frac-

tion of paths for configuration c which are solving or non-solving.
For a given partition Γ = {γ1, . . . ,γk} of Pc, the average purity of all groups can

be used as an evaluation criterion for the given partition. However, an unweighted
average of the purities has the effect that the average purity is higher if Γ contains
many singletons because they contribute with a purity of 1.0 each. We therefore
consider a weighted average purity for Γ where the purity of each cluster from Γ

contributes proportionally to its size to the average. The weighted average purity for a
set of clusters Γ is defined as purityw(Γ ) = 1

∑γi∈Γ |γi| ∑γi∈Γ |γi| · purity(γi). However,
the optimal number of clusters is not known. We thus consider the weighted average
purity of all possible number of clusters. For a configuration c, the number of possible
clusters ranges from 1 to |Pc|. The weighted average purity for any configuration c
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and for any similarity measure is 1.0 for |Pc| many clusters, and q(Pc) for 1 cluster.
The behaviour between these extremes can then be used as evaluation criterion and
means of comparison between the proposed similarity measures, for example to find
out which similarity measure reaches the highest average purity with the smallest
numbers of clusters.

4.3 Results
For each start configuration c and each similarity measure, the weighted average
purity is computed for each number of clusters between 1 and |Pc|. Figure 2 shows
the results for some exemplary configurations. The possible number of clusters (i.e.,
the number of paths) is drawn on the x-axes, the corresponding weighted average
purity of the clusters on the y-axes. Note that the weighted average purity is always
larger than q(Pc) which is indicated by the dashed line. The first observation is
that clustering with any of the similarity measures yields partitions with a weighted
average purity considerably higher than the corresponding q value. Furthermore,
the CoMapPa1 and CoMapPa2 distance measures perform clearly better than the
purely set- or order-based measures. With these two measures, it is possible to obtain
a weighted average purity close to 1 with only a few clusters. This observation is
supported by Table 2 which presents the weighted average purity for the clustering
results for all similarity measures for some graphs, if the number of clusters is fixed
to 5, 10, 20, or 302. For each game and for each x ∈ {5,10,20,30}, the highest px is
highlighted. Table 2 reveals that for almost all games, the CoMapPa1 and CoMapPa2
distance obtain the highest weighted average purity, often close to 100%. This is even
achieved for game 723 where the number of solving and non-solving paths are almost
equal. Nevertheless, clustering the 2704 paths with CoMapPa1 and CoMapPa2 yields
almost pure clusters when only choosing 5 clusters. Figure 2 also indicates that the
CoMapPa1 and CoMapPa2 measures perform almost equally well when using the
normalized or unnormalized version of the measure. This is not the case for the
set-based and order-based measures: here, the unnormalized measures consistently
yield less good results.

In order to show that these observations are not only artifacts of single games, we
adapt the idea of considering the area under the curve of the corresponding weighted
average purity line. Informally, for a given sequence of weighted average purities
(one entry per possible number of clusters) for one game and one similarity measure,
we consider the area between the corresponding curve and the corresponding q
line. Dividing this value by the size of the area of the “ideal” curve which reaches
a weighted average purity of 100% with 2 clusters, yields the relative AUC. The
relative AUC is computed for every similarity measure and every game. The results
are shown in Figure 3 (left). The observations made for single games can be confirmed
here. The relative AUC is consistently higher for all games for the CoMapPa1 and

2 The table with the results for all configurations is contained in the supplementary material available
under http://gtna.cs.uni-kl.de/en/gruppe/bockholt/PDFs/CN2016SupplementaryMaterial.pdf

http://gtna.cs.uni-kl.de/en/gruppe/bockholt/PDFs/CN2016SupplementaryMaterial.pdf
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Table 2: The weighted average purity for each of the six similarity measures for a
fixed number of clusters. For each game, results for the unnormalized measure are
presented in the first line, results for the normalized measure are presented in the
second line. px denotes the weighted average purity of the clustering when choosing
x clusters. For each game and each x ∈ {5,10,20,30} the highest px is highlighted.
q(Pc) is denoted by q and gives the fraction of solving or non-solving paths of all
paths for the configuration. All values are percentages. Because of lack of space, the
table only shows the results for a few games. The full table is available online under
the given link.

σnss σess σlcs δmad δcomappa1 δcomappa2

p5 p10 p20 p30 p5 p10 p20 p30 p5 p10 p20 p30 p5 p10 p20 p30 p5 p10 p20 p30 p5 p10 p20 p30 q

Game 19 69 69 78 84 69 74 81 81 68 71 71 71 87 87 88 89 85 88 89 90 85 85 87 88 67.82
79 79 84 84 68 68 81 84 84 84 84 85 84 86 89 89 85 85 92 94 92 96 96 96

Game 357 72 82 82 87 75 75 81 81 74 81 82 85 90 91 95 95 99 99 100 100 93 98 99 99 71.71
87 87 87 89 82 83 88 89 80 84 87 89 85 90 90 91 95 95 98 100 99 100 100 100

Game 723 55 56 66 74 55 57 58 63 55 57 65 79 95 95 96 96 99 99 99 99 99 99 99 99 54.44
74 90 94 94 55 56 58 61 81 84 93 94 95 95 96 96 96 99 99 99 99 99 99 99

Game 765 76 78 79 79 76 78 78 82 76 77 77 80 86 86 89 91 86 88 95 95 86 86 99 99 76.41
77 80 85 85 76 76 79 86 78 79 84 86 84 89 91 91 82 90 96 96 87 94 98 99

CoMapPa2 measure, regardless whether the normalized or unnormalized version is
used. The relative AUC for all other measures is smaller and there are high differences
between the normalized and unnormalized versions. When considering the results
shown in Figures 2 and 3 (left), it is striking that the unnormalized versions of the
set- and order-based measures yield clusters with a considerably smaller weighted
average purity than the normalized version. There is the possibility that the similarity
measures only distinguish between shorter and longer paths (because clearly, a
solving path needs to have a certain length while non-solving paths can be short)
and reach high average purity by this effect. Therefore, Figure 3 (right) shows the
relative AUC of the resulting clusters, if for each game, only paths at least as long
as the shortest solving path are considered. The gap between the normalized and
unnormalized versions of the measures clearly decreases, but the general trend of the
previous results is confirmed. Thus, clustering the paths with the proposed similarity
measures can distinguish quite well between solving and non-solving paths. This
implies that solving and non-solving paths show structural differences that can be
detected by such simple similarity measures.

5 Conclusion
In this paper we have shown on a first benchmark data set and a simple ground truth,
that already very simple quantifications of the similarity of paths in complex networks
yield interesting insights into this new dimension of analyzable data. We have shown
that—using a simple clustering algorithm—the measures which incorporate the
underlying graph and the traversal order of the paths, contain the most information to
categorize the paths representing the solving attempts of games into those that finally
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Fig. 3: Relative AUC of the weighted purity for all paths of all configurations (left)
and when only sufficiently long paths are considered (right).

solve it and those that do not, to a quite high degree. The results imply that similarity
measures which take into account the underlying network structure are best-suited
to find groups of similar paths. However, the results are currently only valid for one
specific data set which is why future work should aim at generalizing and validating
the proposed measures on further data sets. In general, we believe that there is a
wealth of data contained in the paths actually taken in a complex network rather than
in the ones imposed by, e.g., centrality indices that always assume that either random
walks or shortest paths are used. In another paper, Dorn, Lindenblatt and Zweig
showed that centralities based on actual path data are also less prone to artifacts than
classic centrality indices [5]. Thus, an important task for the community in network
analysis should be to obtain such data and to publish it—preferably with ground truth
regarding clusterings, centrality of nodes in the paths, external parameters like time
taken or time stamps at the single nodes, etc.—to mine and analyze it together with
the underlying network structures.
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